especially between the 1,2- and 2,3-naphthaldehyde derivatives [1.904 (4) and 1.937 (5) \AA, respectively]. Although similar differences have been described for $\mathrm{Cu}-\mathrm{N}$ bond lengths in several copper-salicylaldimine complexes (Jain \& Syal, 1973), those may be partly caused by the variation in the group bonded to the N atoms, while in (II) and (III), the same N -substituent is used.
The observed variation could then be ascribed in this case to the different positions of the coordinating groups within the naphthalene rings (1,2 - or 2,3). The 1,2 -bond in naphthalene has been ascribed (Badger, 1969) a larger double-bond character than the 2,3 -bond and this might favour a larger delocalization of the electron density in the 1,2 -derivative which would then make compound (II) more stable than compound (III).

Fig. 4. The molecular structure of (III) showing the atomnumbering scheme adopted. The thermal ellipsoids show 50% probability.

The large vibrational amplitudes of the ethoxy groups in all of the compounds limited the precision of the structure determinations. In order to achieve a better understanding of the system, further studies on related compounds were undertaken and the results will be published elsewhere (Fernández, Rosales, Rubio, Salcedo, Toscano \& Vela, in preparation).

We thank Mr Abelardo Cuellar for technical assistance.

References

BADGER, G. M. (1969). Aromatic Character and Aromaticity, pp. 22-23. Cambridge Univ. Press.
Bhatia, S. C., Bindlish, J. M., Sainl, A. R. \& Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.

Calvin, M. \& Wilson, K. W. (1945). J. Am. Chem. Soc. 67, 2003-2007.
Frasson, E., Panattoni, C. \& Sacconi, L. (1959). J. Phys. Chem. 63, 1908-1911.
Hatfield, W. E. \& Bunger, F. L. (1966). Inorg. Chem. 5, 1161-1167.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jain, P. C. \& Syal, V. K. (1973). J. Chem. Soc. Dalton Trans. pp. 1908-1912.
Maslen, H. S. \& Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.
Mehrotra, R. C., Bohra. R. \& Gaur, D. P. (1978). Metal β-Diketonates and Allied Derivatives, pp. 9-10. London: Academic Press.
Sheldrick, G. M. (1981). SHELXTL, revision 3. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen.
Stewart, J. M. \& Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.

Acta Cryst. (1986). C42, 1316-1319

Structure of [N, N^{\prime}-Bis(3-aminopropyl)-1,2-ethanediamine]perchloroatocopper(II) Perchlorate Hemihydrate

By Tseng-Yuh Lee, Tsong-Jen Lee,* Ching-You Hong, Ming-Yei Hsieh, Der-Thing Wu and Chung-Sun Chung

National Tsing Hua University, Hsinchu, Taiwan 300
(Received 10 February 1986; accepted 29 April 1986)

Abstract. $\quad\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)\left(\mathrm{C}_{8} \mathrm{H}_{22} \mathrm{~N}_{4}\right)\right] \mathrm{ClO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=1.669 \mathrm{~mm}^{-1}, \quad F(000)=1840, T=296(4) \mathrm{K}, R(F)=$ 445.74, orthorhombic, $P b c a, \quad a=13.939$ (3), $b=$ $16 \cdot 169$ (6), $c=15 \cdot 325$ (5) $\AA, V=3454$ (6) $\AA^{3}, Z=8$, $D_{m}=1.68$ (8) (by flotation in $\mathrm{CCl}_{4} /$ hexane mixture), $D_{x}=1.714 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $К \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$

[^0]0.069 for 2105 observed reflections. The coordination about Cu^{11} is square pyramidal, with the tetraamine ligand equatorial and perchlorate ion axial. The two asymmetric nitrogens are of the same R or S configuration. The six-membered chelate rings exhibit a chair form and the five-membered ring takes a gauche form.

Introduction. Copper(II) exhibits a diversity of stereochemistry in its complexes with aliphatic tetraamines: trigonal bipyramidal (Sheu, Lee, Lu, Liang \& Chung, 1983), square pyramidal (Lu, Wu \& Chung, 1986), elongated tetragonal octahedral (Clay, Murray-Rust \& Murray-Rust, 1979), or a distorted stereochemistry involving out-of-the-plane ligands positioned both along and off the z axis (Davey \& Stephens, 1971). As part of our continuing studies on the structures of copper(II)tetraamine complexes (Lu, Wu \& Chung, 1986; Lee, Lee, Hong, Wu \& Chung, 1986), the structure of the title compound has been determined and is reported here along with a comparison of its structural features with those reported for other $\mathrm{Cu}^{\mathrm{II}}$ complexes of linear aliphatic tetraamines of the type $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{l} \mathrm{NH}-$ $\left(\mathrm{CH}_{2}\right)_{m} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2}$ denoted by the symbol l, m, n-tet, where the values of l, m, and n are 2 or 3 (Marongiu, Lingafelter \& Paoletti, 1969; Fawcett, Rudich, Toby, Lalancette, Potenza \& Schugar, 1980).

Experimental. Copper perchlorate hexahydrate $(2.0 \mathrm{~g}$ in 25 ml water) was added to ethanol solution of N, N^{\prime}-bis(3-aminopropyl)-1,2-ethanediamine $(1.0 \mathrm{~g}$ in 40 ml ethanol). Blue crystals of [N, N^{\prime}-bis (3 -amino-propyl)-1,2-ethanediamine]copper(II) perchlorate formed immediately (Hedwig, Love \& Powell, 1970). Washed with 2-propanol, then ether. The single crystal used in X-ray diffraction analysis was obtained by recrystallization from 25% aqueous solution of 2 -propanol-methanol, after slow evaporation of the solvent at room temperature.

Experimental data and structure-solution parameters together with the standard refinement procedures are listed in Table 1. The hydrogen atoms are located on a difference Fourier map and their temperature factors were initially assigned according to $B_{\mathrm{H}}=B_{n}+1$, where n is the atom to which the H atom is bonded (Lee, Lee, Juang \& Chung, 1986).

Discussion. The atomic coordinates and temperature factors are listed in Table 2.* A perspective view of the molecule with the numbering scheme and the deviations of the atoms from the least-squares plane through the basal atoms, $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3), \mathrm{N}(4)$, are indicated in Fig. 1.
The coordination geometry about the copper ion is square pyramidal. The four donor N atoms of the tetraamine form a very slightly distorted plane and a perchlorate O atom occupies the axial position. The CuN_{4} chromophore is planar to $\pm 0.09 \AA$ (Fig. 1). The equatorial $\mathrm{Cu}-\mathrm{N}$ distances span a rather narrow range,

[^1]Table 1. Experimental data and structure-refinement parameters
Crystal size (mm)
Diffractometer and data-collection
technique used

Scan width
Number and θ range used for
measuring lattice parameters
Absorption correction applied

Max. and min. transmission factor
$\operatorname{Max} .(\sin \theta) / \lambda$ in intensity
measurement
Range of $h k l$
Standard reflections and intensity variation
Number of reflections measured
Number of unique reflections Method used to solve structure $\rho_{\text {max }}$ and $\rho_{\text {min }}$ heights in final
difference Fourier synthesis
Parameters refined, nonhydrogen atoms hydrogen atoms

Atomic scattering factors, f^{\prime} and $f^{\prime \prime}$
Number of reflections per parameter $R(F)$ and $w R, w=1 / \sigma_{F}^{2}$
$R_{\text {int }}$
\mathbf{R}^{2}
$R_{\text {int }}$
Max., av. Δ / σ
Programs used

Computer
$0.3 \times 0.3 \times 0.35$
$\omega-2 \theta$ scan, four-circle diffractometer (Nonius CAD-4) with graphite monochromator
$2(0.7+0.35 \tan \theta)^{\circ}$
25 reflections with $11<2 \theta<20^{\circ}$
Experimental absorption correction
based on φ scan (North, Phillips
\& Mathews, 1968)
$0.705,0.606$
$0.6501 \AA^{-1}$
$0,0,1$ to $18,20,19$
082, 443, 506;
< 3\%
3541
$2105[I>3 \sigma(I)]$
Patterson and Fourier methods
1.034 and $0.37 \mathrm{e}^{\AA^{-3}}$

Coordinates, and anisotropic temperature factors (216 parameters)
Isotropic temperature factors (108 parameters)
International Tables for X-ray Crystallography (1968)
10
0.069 and 0.068
3.80
0.032
$0.37,0.005$
THUCP (Hsieh \& Lee, 1985); XTAL83 (Stewart, Hall, Alden, Olthof-Hazekamp, Doherty, Pagoaga \& Norden, 1983); ORTEPII (Johnson, 1976).
IBM PC-XT and CDC Cyber-840

Table 2. Atomic positional and thermal parameters of non-hydrogen atoms
$B_{\mathrm{eq}}=\frac{4}{3} \sum_{i} \sum_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \boldsymbol{B}_{i j}$, where the \mathbf{a}_{i} 's are the length vectors in direct space.

	Population	- x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cu	1.0	0.13146 (7)	0.05881 (6)	0.22397 (6)	2.9
$\mathrm{Cl}(1)$	1.0	-0.1208 (2)	0.0267 (2)	0.2200 (2)	4.5 (1)
$\mathrm{Cl}(2)$	1.0	0.4148 (3)	0.3121 (3)	0.4457 (2)	7.9 (2)
O(11)	1.0	-0.0415 (5)	0.0541 (6)	0.1722 (5)	6.5 (4)
O(12)	1.0	-0.0935 (8)	-0.0215 (9)	$0 \cdot 2885$ (7)	$13 \cdot 1$ (8)
O(13)	1.0	-0.1763 (10)	0.0876 (7)	$0 \cdot 2442$ (10)	14.4 (9)
O(14)	1.0	-0.1758 (10)	-0.0282 (12)	0.1717 (8)	17.7 (12)
O(21)	1.0	0.4098 (1)	0.3307 (13)	0.5322 (8)	18.9 (13)
O(22)	1.0	0.3263 (8)	$0 \cdot 3068$ (9)	0.4096 (7)	11.0 (7)
O(23)	1.0	0.4844 (8)	0.3523 (10)	0.4035 (8)	14.4 (10)
O(24)	1.0	0.4527 (14)	0.2282 (13)	0.4521 (12)	20.3 (16)
O(W)	0.5	0.3707 (12)	-0.0039 (11)	0.0212 (9)	6.5 (8)
N(1)	1.0	0.0971 (7)	0.0880 (7)	0.3490 (5)	$5 \cdot 7$ (5)
N(2)	1.0	0.1238 (5)	0.1791 (5)	0.1909 (5)	3.9 (3)
N(3)	1.0	0.1766 (6)	0.0411 (6)	0.0981 (5)	4.4 (4)
N(4)	1.0	$0 \cdot 1320$ (7)	-0.0621 (5)	0.2511 (6)	$5 \cdot 2$ (4)
C(1)	1.0	0.1379 (9)	0.1644 (9)	0.3864 (7)	$6 \cdot 6$ (6)
C(2)	1.0	$0 \cdot 1069$ (10)	0.2377 (9)	0.3372 (8)	7.2 (7)
C(3)	1.0	$0 \cdot 1554$ (8)	0.2445 (7)	0.2506 (8)	5.7 (6)
C(4)	1.0	$0 \cdot 1723$ (8)	0.1899 (7)	0.1047 (7)	$5 \cdot 1$ (5)
C(5)	1.0	$0 \cdot 1484$ (8)	0.1159 (7)	0.0502 (6)	$5 \cdot 2(5)$
C(6)	1.0	$0 \cdot 1480$ (11)	-0.0383 (8)	0.0542 (7)	7.2 (7)
C(7)	1.0	0.1736 (10)	-0.1100 (7)	0.1044 (9)	$7 \cdot 3$ (7)
C(8)	1.0	$0 \cdot 1126$ (9)	-0.1240 (7)	0.1853 (10)	6.9 (7)

2.012 (8)-2.031 (8) A, which are typical for copper(II)-tetraamine complexes (Fawcett, Rudich, Toby, Lalancette, Potenza \& Schugar, 1980). The $\mathrm{Cu}-\mathrm{O}$ (apical) distance, 2.539 (7) \AA, is within the range of 2.52 (2)-2.883 (2) \AA reported (Tasker \& Sklar, 1975). No other donor atoms are located within reasonable bonding distance of the Cu^{11} atom. The two asymmetric nitrogens, $\mathrm{N}(2)$ and $\mathrm{N}(3)$, are of the same R or S configuration. The $\mathrm{Cu}-3,2,3$-tet moiety has a pseudo-twofold axis through Cu and the center of the $\mathrm{C}(4)-\mathrm{C}(5)$ bond in the central five-membered chelate ring. The conformation of the quadridentate ligand, 3,2,3-tet, is in its most stable planar form, with both six-membered chelate rings having a chair form and the five-membered ring having a gauche form. The chelate angles around $\mathrm{Cu}^{\mathrm{II}}$ are those expected for copper(II)tetraamine complexes with an alternating sequence of five- and six-membered rings (Marongiu, Lingafelter \& Paoletti, 1969).

In view of the above considerations, the arrangement of the 3,2,3-tet ligand in the title complex appears to be relatively strain-free. These structural features suggest that the N_{4} ligand donor sets nearly match the symmetry properties of the $\mathrm{Cu}^{1 \mathrm{II}}$ orbitals and are consistent with the relatively low heat of formation and large stability constant of this $\mathrm{Cu}^{\mathrm{II}}$ complex (Bianchini, Fabbrizzi, Paoletti \& Lever, 1975).

A water molecule with half occupancy is situated among the perchlorate ions and $[\mathrm{Cu}(3,2,3 \text {-tet })]^{2+}$. The possible intra- and intermolecular hydrogen bonds among this water molecule, perchlorate ions, -NH and NH_{2} groups are listed in Table 3 and indicated in Fig. 2. These hydrogen bonds stabilize the crystal lattice to a

Fig. 1. Perspective view of the $[\mathrm{Cu}(3,2,3-\mathrm{tet})]^{2+}$, showing the atomic numbering scheme and displacements of atoms from leastsquares plane of $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3)$ and $\mathrm{N}(4)$ (in $\AA)$. E.s.d.'s are around $0.01 \AA$. Thermal ellipsoids are depicted at the 50% probability level. H atoms on carbon atoms are not plotted, but the amide hydrogens, $\mathrm{H}(17)-\mathrm{H}(22)$, are. These latter are plotted as plane ellipses. $\mathrm{O}(11)$ is the coordinated O atom of the perchlorate ion.
large extent. Hence the crystal deteriorates as it is exposed to air and collapses after several days. The perchlorate ions suffer orientational disorder. This is manifested in the residual peaks around the perchlorate ions. The rather high R value is probably due to this effect.

Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N}(1)$	2.031 (8)	$\mathrm{N}(3)-\mathrm{C}(6)$	1.502 (16)
$\mathrm{Cu}-\mathrm{N}(2)$	2.012 (8)	C(6)-C(7)	1.437 (18)
$\mathrm{Cu}-\mathrm{N}(3)$	2.049 (7)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.520 (20)
$\mathrm{Cu}-\mathrm{N}(4)$	1.998 (8)	$\mathrm{C}(8)-\mathrm{N}(4)$	1.447 (16)
$\mathrm{Cu}-\mathrm{O}(11)$	2.539 (7)	$\mathrm{Cl}(1)-\mathrm{O}(11)$	1.398 (8)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.476 (17)	$\mathrm{Cl}(1)-\mathrm{O}(12)$	1.361 (12)
C(1)-C(2)	1.469 (19)	$\mathrm{Cl}(1)-\mathrm{O}(13)$	$1 \cdot 305$ (13)
C(2)-C(3)	1.493 (18)	$\mathrm{Cl}(1)-\mathrm{O}(14)$	1.386 (16)
$\mathrm{C}(3)-\mathrm{N}(2)$	1.466 (14)	$\mathrm{Cl}(2)-\mathrm{O}(21)$	1.361 (13)
N(2)-C(4)	1.495 (13)	$\mathrm{Cl}(2)-\mathrm{O}(22)$	1.355 (11)
C(4)-C(5)	1.497 (16)	$\mathrm{Cl}(2)-\mathrm{O}(23)$	1.335 (14)
$\mathrm{C}(5)-\mathrm{N}(3)$	1.469 (14)	$\mathrm{Cl}(2)-\mathrm{O}(24)$	1.460 (21)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	90.1 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(4)$	$111.2(10)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(3)$	85.1 (3)	$\mathrm{C}(8)-\mathrm{N}(4)-\mathrm{Cu}$	122.1 (7)
$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(4)$	$93 \cdot 3$ (4)	$\mathrm{O}(11)-\mathrm{Cu}-\mathrm{N}(1)$	94.5 (3)
$\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(1)$	91.8 (4)	$\mathrm{O}(11)-\mathrm{Cu}-\mathrm{N}(2)$	84.3 (3)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$	173.3 (4)	$\mathrm{O}(11)-\mathrm{Cu}-\mathrm{N}(3)$	89.6 (3)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$	$176 \cdot 2$ (3)	$\mathrm{O}(11)-\mathrm{Cu}-\mathrm{N}(4)$	92.2 (3)
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	118.0 (7)	$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(12)$	111.4 (6)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	111.3 (10)	$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(13)$	112.2 (7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.5 (11)	$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(14)$	111.1 (6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(2)$	111.4 (9)	$\mathrm{O}(12)-\mathrm{Cl}(1)-\mathrm{O}(13)$	112.2 (8)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Cu}$	121.6(6)	$\mathrm{O}(12)-\mathrm{Cl}(1)-\mathrm{O}(14)$	101.5 (9)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(4)$	108.2 (6)	$\mathrm{O}(13)-\mathrm{Cl}(1)-\mathrm{O}(14)$	107.8 (9)
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	107.4 (8)	$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}(22)$	111.4 (8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(3)$	108.7 (8)	$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}(23)$	113.6 (10)
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{Cu}$	105.9 (6)	$\mathrm{O}(21)-\mathrm{Cl}(2)-\mathrm{O}(24)$	99.1 (11)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(6)$	117.4 (7)	$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(23)$	119.7 (8)
$\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	112.5 (10)	$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(24)$	107.3 (10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	114.7 (11)	$\mathrm{O}(23)-\mathrm{Cl}(2)-\mathrm{O}(24)$	102.8 (10)

Hydrogen bonds	Lengths	Angles
$\mathrm{N}(1)-\mathrm{H}(17) \cdots \mathrm{O}(W .4)^{*}$	$3.00(2) \AA$	$130.9(7)^{\circ}$
$\mathrm{N}(1)-\mathrm{H}(18) \cdots \mathrm{O}(12)$	$3.33(2)$	$132.0(8)$
$\mathrm{N}(2)-\mathrm{H}(19) \cdots \mathrm{O}(1)$	$3.08(1)$	$126.7(6)$
$\mathrm{N}(3)-\mathrm{H}(20) \cdots \mathrm{O}(W)$	$3.04(2)$	$152.9(6)$
$\mathrm{N}(4)-\mathrm{H}(21) \cdots \mathrm{O}(14.8)^{*}$	$2.98(2)$	$150.4(7)$

[^2]Fig. 2. Stereoview of $\left[\mathrm{Cu}(3,2,3\right.$-tet $\left.)\left(\mathrm{ClO}_{4}\right)\right] \mathrm{ClO}_{4} \cdot 0 \cdot 5 \mathrm{H}_{2} \mathrm{O}$, showing the coordination geometry around the copper(II) atom and the possible hydrogen bonds. The numbers 4 and 8 after the decimal points indicate the corresponding equivalent atoms respectively [symmetry codes: 4 for ($\frac{1}{2}-x,-y, \frac{1}{2}+z$); 8 for ($\frac{1}{2}+x, y, \frac{1}{2}-z$) International Tables for Crystallography (1983). Vol. A, p. 156|.

The structures of some $\mathrm{Cu}^{\mathrm{II}}$ complexes of linear aliphatic tetraamines have been reported. A comparison of the selected structural data of these complexes with those of the title compound is given in Table 4. These structural data are expected to influence the kinetic properties of these complexes. This aspect is being taken up shortly.

Table 4. Selected structural data for $\mathrm{Cu}^{\mathrm{II}}$-tetraamine complexes

Linear aliphatic tetraamines of the type $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{l} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{m}$ $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2}$ are denoted by the symbol l, m, n-tet.

	$\begin{gathered} \mathrm{Cu}(2,2,2- \\ \mathrm{tet})(\mathrm{SCN})_{2} \end{gathered}$	$\begin{gathered} \mathrm{Cu}(2,3,2- \\ \text { tet })\left(\mathrm{ClO}_{4}\right)_{2} \end{gathered}$	$\begin{aligned} & \mathrm{Cu}(3,2,3- \\ & \text { tet })\left(\mathrm{ClO}_{4}\right)_{2} \end{aligned}$	$\begin{gathered} \mathrm{Cu}(3,3,3- \\ \text { tet })\left(\mathrm{ClO}_{4}\right)_{2} \end{gathered}$
$\begin{array}{r} \mathrm{Cu}-\mathrm{N}(\AA) \\ \text { distance } \end{array}$	$\begin{aligned} & 2.008(7)- \\ & 2.030(5) \end{aligned}$	$\begin{aligned} & 2.016(6)- \\ & 2.032(6) \end{aligned}$	$\begin{aligned} & 2.012(8)- \\ & 2.031 \text { (8) } \end{aligned}$	$\begin{aligned} & 2.02(2)- \\ & 2.04(2) \end{aligned}$
$\begin{array}{r} \mathrm{Cu}-\mathrm{O}(\AA) \\ \text { distance } \end{array}$	-*	$\begin{aligned} & 2.667(5) \\ & 2.527(5) \end{aligned}$	2.539 (7)	
Chelate	84.6 (3)	85.3 (2)	85.1 (3)	
angle for	84.3 (2)	85.3 (3)		
5-membered $\text { ring }\left(^{\circ}\right)$	84.7 (3)			
Chelate		93.9 (2)	90.1 (4)	92.7 (7)
angle for			93.3 (4)	97.7 (7)
6 -membered ring (${ }^{\circ}$)				85.3 (7)
trans	154.0	176.4 (3)	173.3 (4)	159.4 (7)
$\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ $\left({ }^{\circ}\right)$	161.0	178.5 (4)	176.2 (3)	169.4 (7)
Coordination geometry about Cu^{11}	distorted square pyramidal	tetragonally distorted octahedral	square pyramidal	tetragonally distorted octahedral
Conformation of chelate rings	gauche, gauche, gauche	gauche, chair, gauche	chair gauche chair	chair, chair, chair
References	Marongiu, Lingafelter \& Paoletti (1969)	Fawcett	Present work	Fawcett
		Rudich,		Rudich,
		Toby,		Toby,
		Lalancette,		Lalancette,
		Potenza \&		
		Schugar (1980)		Schugar (1980)

*The $\mathrm{Cu}-\mathrm{S}$ bond distance for this complex is 2.607 (2) \AA.

The authors would like to thank the National Science Council for financial support.

References

Bianchini, C., Fabbrizzi, L. Paoletti, P. \& Lever, A. B. P. (1975). Inorg. Chem. 14, 191-199.

Clay, R., Murray-Rust, J. \& Murray-Rust, P. (1979). J. Chem. Soc. Dalton Trans. pp. 1135-1 139.
Davey, G. \& Stephens, F. S. (1971). J. Chem. Soc. A, 11 , 1917-1920.
Fawcett, T. G., Rudich, S. M., Toby, B. H., Lalancette, R. A., Potenza, J. A. \& Schugar, H. J. (1980). Inorg. Chem. 19, 940-945.
Hedwig, G. R., Love, J. L. \& Powell, H. K. J. (1970). Aust. J. Chem. 23, 981-987.
Hsieh, M.-Y. \& Lee, T.-Y. (1985). Tsing Hua University crystal package, THUCP. Computer Center, National Tsing Hua University, Hsinchu, Taiwan 300.
International Tables for Crystallography (1983). Vol. A, p. 156. Dordrecht: Reidel.
International Tables for X-ray Crystallography (1968). Vol. III, p. 202. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Lee, T.-J., Lee, T.-Y., Hong, C.-Y., Wu, D.-T. \& Chung, C.-S. (1986). Acta Cryst. C42, 999-1001.

Lee, T.-J., Lee, T.-Y., Juang, W.-B. \& Chung, C.-S. (1986). Acta Cryst. C41, 1745-1748.
Lu, T.-H., Wu, D.-T. \& Chung, C.-S. (1986). J. Chem. Soc. Dalton Trans. In the press.
Marongiu, G., Lingafelter, E. C. \& Paoletti, P. (1969). Inorg. Chem. 8, 2763-2767.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A 24, 351-359.
Sheu, H.-R., Lee, T.-J., Lu, T.-H., Liang, B.-F. \& Chung, C.-S. (1983). Proc. Natl Sci. Counc. (Taipei), 7, 113-1 18.

Stewart, J. M., Hall, S. R., Alden, R. A., Olthof-Hazekamp, R., Doherty, R. M., Pagoaga, M. K. \& Norden, T. M. (1983). XTAL83. A system of crystallographic programs. Univ. of Maryland, Computer Science Center, College Park, Maryland 20742.

Tasker, P. A. \& Sklar, L. J. (1975). J. Cryst. Mol. Struct. 5, 329-344.

Acta Cryst. (1986). C42, 1319-1322

The Chain Polymeric Structure of Lead(II) Crotonate

By William Clegg, Ian R. Little and Brian P. Straughan
Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU, England

(Received 17 March 1986; accepted 30 April 1986)

Abstract. catena- μ_{3}-(Crotonato- $\mu-\mathrm{O}, \mu-\mathrm{O}^{\prime}$)-(crotonato$\left.O, O^{\prime}\right)-\operatorname{lead}(\mathrm{II}),\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\right], M_{r}=377 \cdot 4$, triclinic, $P \overline{1}, \quad a=5.1930(4), \quad b=7.3386(6), \quad c=$ 13.1528 (12) $\AA, \alpha=98.797$ (8), $\beta=91.668$ (8), $\gamma=$ $94.059(8)^{\circ}, V=493.70 \AA^{3}, Z=2$ monomeric units, $D_{x}=2.538 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \quad \mu=$ $17.2 \mathrm{~mm}^{-1}, F(000)=344, T=295 \mathrm{~K}, R=0.036$ for

1621 observed reflections. Pb is coordinated by two chelating crotonate ligands, one of which is additionally bonded via both O atoms to further Pb atoms to produce a polymeric chain. The Pb coordination geometry is distorted pentagonal pyramidal, with the site opposite the apex occupied by a stereochemically active lone pair of electrons. $\mathrm{Pb}-\mathrm{O}$ bond lengths are in © 1986 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 43022 (20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * The numbers 4 and 8 after the decimal point in the parentheses indicate the corresponding equivalent atoms respectively [symmetry codes: 4 for $\left(\frac{1}{2}-x,-y, \frac{1}{2}+z\right) ; 8$ for $\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$; International Tables for Crystallography (1983). Vol. A, p. 156].

